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Static instability analysis of an elastic band travelling in
the gravitational field

Nikolay Banichuk, Juha Jeronen, Tytti Saksa and Tero Tuovinen

Summary. Static instability analysis is performed for an axially moving elastic band, which
is travelling at a constant velocity in a uniform gravitational field between two supports. The
buckling of the band is investigated with the help of admitting small transverse deflections. The
model of a thin elastic beam (panel) subjected to bending, centrifugal forces and nonhomoge-
neous tension (including a gravitational term) is used. Buckling analysis and estimation of the
critical velocities of elastic instability are based on variational principles and variational inequal-
ities. As a result, explicit formulas for upper and lower limits for critical velocities are found.
It is shown analytically that a critical velocity always exists. The critical buckling modes are
found, first, by solving the original differential equation directly, and, secondly, by energy min-
imization. The buckling modes and corresponding critical velocities are found and illustrated
with some numerical examples. The gravitational force is shown to have a major effect on the
buckled shape, but a minor effect on the critical velocity.
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Introduction

Vibrations and stability of axially moving materials, such as strings, beams, membranes
and plates, have been studied widely, since such models have various applications in
industry, e.g., in paper making or in transmission cables. Stability studies of travelling
materials are important, since they yield information on critical transport velocities for
machine operation.

In previous studies concerning vibrations of (moving) materials, the effect of gravity
has usually been neglected, since its magnitude is minor compared to the magnitude of
the axial tension. Recently, Luo and Mote have studied equilibrium of travelling elastic,
sagged cables under uniformly distributed loading [10]. For a three-dimensional model,
they derived exact, closed-form solutions for the equilibrium configuration and tension
distribution of the cables. The present study concentrates on stability of thin, elastic
panels and critical velocity estimations.

Vibrations of travelling strings, beams and bands have first been studied by Archibald
and Emslie [1], Miranker [11], Swope and Ames [17] Mote [12, 13, 14], Simpson [16],
Ulsoy and Mote [18], Chonan [5], Wickert and Mote [21]. These studies focused on free
and forced vibrations including the nature of wave propagation in moving media and the
effects of axial motion on the eigenfrequencies and eigenmodes. Stability of travelling
two-dimensional rectangular membranes and plates have been studied by Ulsoy and Mote
[19], Lin and Mote [9], Lin [8], Banichuk et al. [2].
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Archibald and Emslie [1] and Simpson [16] studied effects of the axial motion on the
eigenfrequencies and eigenfunctions. It was shown that the natural frequency of each mode
decreases when the transport speed increases, and that the travelling string and beam both
experince divergence instability at a sufficiently high speed. Stability considerations were
reviewed by Mote [13].

Recent studies on travelling materials have been performed, e.g., by Shin et al. [15],
Wang et al. [20], Frondelius et al. [7], Banichuk et al. [3]. In Shin et al., the out-of-plane
vibrations of an axially moving membrane were studied, and it was shown numerically
that membrane is stable until a critical velocity, at which statical instability occurs [15].
Wang et al. studied transverse vibrations of axially moving strings [20]. In their study,
it was shown using a Hamiltonian approach that for the transverse motion of the string,
no instability occurs at the critical velocity, where a steady-state solution exists.

Frondelius et al. [7] and Banichuk et al. [3] studied a travelling band interacting with
surrounding fluid and the fluid-web-contact influence on the critical velocity. Banichuk et
al. studied the static instability of the travelling band submerged in flowing ideal fluid,
and it was found that in presence of fluid the critical divergence speed is much lower than
the vacuum solution and the divergence shape also differs from the vacuum case [3].

In the present study, the static instability of an axially moving thin, elastic band is
investigated, when the band is travelling in the gravitational field. The investigation
is performed in the case where the band is moving parallel to the gravity but it can
also be applied to cases in which the direction of motion with respect to the gravity
varies, of which several numerical examples are given. Based on variational principles and
variational inequalities, explicit estimations for the critical velocity are derived. In the
numerical examples, the effects of the gravity are visualised.

The critical transport velocity and the corresponding buckled shape are found numeri-
cally by solving directly the original differential equation via the Fourier–Galerkin method.
Secondly, they are solved by minimizing a functional corresponding to the energy. The
obtained nonlinear optimization problem is solved numerically using the Rayleigh–Ritz
method.

Basic relations

We consider an elastic band, travelling at a constant velocity between two supports parallel
to a uniform gravitational field (Earth’s) in a rectangular coordinate system. We study
the transverse displacement w of the band assuming that the displacement is cylindrical,
i.e., the displacement does not vary in the cross section (in the y direction). The distance
between the two supports is constant, denoted by `.

The transport velocity of the panel is assumed to be a constant, V0, and the panel is
moving along the x axis. The panel is tensioned at the edges, and the tension T depends
on the space coordinate x, T = T (x). The standard gravity constant is denoted by g, and
the thickness of the panel by h. The panel is assumed to have a constant mass per unit
area, m.

The dynamic equation for the transverse displacement of the panel can be written as

mwtt + 2mV0wxt +mV 2
0 wxx = T wxx + Txwx −Dwxxxx . (1)

Here, D describes the bending rigidity of the panel.
Tension T varies due to the gravity as

T (x) = T0 +mgx , (2)
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Figure 1. Panel moving in the gravitational field.

Figure 2. The elastic band moving in a nonvertical direction (inclined with respect to the gravity).

where T0 is a constant tension at the lower edge of the panel (see Figure 1). Substituting
(2) into (1), we obtain

mwtt + 2mV0wxt +mV 2
0 wxx = (T0 +mgx)wxx +mgwx −Dwxxxx . (3)

In the more general case, where the direction of motion of the band has some nonzero
angle θ with respect to the uniform gravitational field, we can perform analogous analysis
using the expression

T (x) = mgx cos θ + T0 (4)

instead of (2), and include the term mg sin θ in the right-hand side of (3). See Figure 2.

Buckling analysis

To study the instability of the panel, we perform a buckling analysis. The static form of
the dynamic equation (3) is studied as a spectral boundary value problem using simply
supported (also known as pinned or hinged) boundary conditions.

Equilibrium for the transverse displacement w is described by the following differential
equation

mV 2
0 wxx − (T0 +mgx)wxx −mgwx +Dwxxxx = 0 . (5)
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The boundary conditions are

w(0) = wxx(0) = 0, w(`) = wxx(`) = 0. (6)

We represent (5)–(6) in a dimensionless form[
V 2
0

T0/m
− 1− mg`

T0
x

]
wxx −

mg`

T0
wx +

D

`2T0
wxxxx = 0 ,

w(0) = wxx(0) = 0 , w(1) = wxx(1) = 0 , (7)

where x ∈ [0, 1] is the dimensionless coordinate. By defining

c0 := V0/
√
T0/m , (8)

α :=
D

`2T0
, (9)

β :=
mg`

T0
, (10)

and substituting (8)–(10) into (7), we obtain

αwxxxx + (c20 − 1− βx)wxx − β wx = 0 , (11)

w(0) = wxx(0) = 0 , w(1) = wxx(1) = 0 . (12)

Boundary value problem and variational principle

Consider the boundary value problem (11)–(12). Multiply (11) by a test function v,
satisfying the boundary conditions (12) and integrate the obtained equation over [0, 1]:

α

∫ 1

0

wxxxxv dx+ (c20 − 1)

∫ 1

0

wxxv dx− β
∫ 1

0

xwxxv dx− β
∫ 1

0

wxv dx = 0 . (13)

Integration by parts yields∫ 1

0

wxxv dx = −
∫ 1

0

wxvx dx ,

∫ 1

0

xwxxv dx = −
∫ 1

0

xwxvx dx−
∫ 1

0

wxv dx ,∫ 1

0

wxxxxv dx =

∫ 1

0

wxxvxx dx . (14)

Substitute (14) into (13) to obtain

α

∫ 1

0

wxxvxx dx+ (1− c20)
∫ 1

0

wxvx dx+ β

∫ 1

0

xwxvx dx = 0 . (15)

Substituting v = w into (15), we finally obtain

α

∫ 1

0

w2
xx dx+ (1− c20)

∫ 1

0

w2
x dx+ β

∫ 1

0

xw2
x dx = 0 . (16)

The left hand side of the equation (16) corresponds to the energy of the system. We
want to find the minimal velocity c0, at which equation (16) has a non-trivial solution.
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Thus, we resolve c20 from (16), and minimize the other side of the obtained equation. This
minimal velocity is the critical velocity for the buckling problem [6], and is obtained from

(c∗0)
2 = min

w∈K

(
1 + α

∫ 1

0
(wxx)

2 dx∫ 1

0
(wx)2 dx

+ β

∫ 1

0
x (wx)

2 dx∫ 1

0
(wx)2 dx

)
, (17)

where
K = {w ∈ C([0, 1]) : w(0) = 0 , w(1) = 0} . (18)

The function w minimizing (17)–(18) is the buckling mode corresponding to the critical
velocity c∗0.

Let us show that the minimization problem (17)–(18) corresponds to the original
problem (11)–(12). Denote

I(w) = 1 + α

∫ 1

0
(wxx)

2 dx∫ 1

0
(wx)2 dx

+ β

∫ 1

0
x (wx)

2 dx∫ 1

0
(wx)2 dx

,

and

I1(w) =

∫ 1

0

(wxx)
2 dx , I2(w) =

∫ 1

0

(wx)
2 dx , I3(w) =

∫ 1

0

x(wx)
2 dx . (19)

It can be easily seen that if w 6≡ 0, then

I1(w) > 0 , I2(w) > 0 , I3(w) > 0 .

Let w∗ be the minimizer of (17)–(18). To prove that w∗ satisfies the necessary ex-
tremum condition, we derive the Euler equation for w∗. Since w∗ is the minimizer, the
first variation of I(w∗) is zero, that is

δI(w∗) = 0 .

Notice that

δI =
1

I2
(α δI1 + β δI3)−

1

I22
(α I1 + β I3) δI2 . (20)

As a result from the variation in (20), we obtain

2

I2(w∗)

∫ 1

0

(
αw∗xxxx − βxw∗xx − βw∗x + (c20 − 1)w∗xx

)
δw dx = 0 , (21)

for any function δw ∈ K. In addition, w must satisfy the boundary conditions (12).
Equation (21) holds for all δw ∈ K. Thus, the resulting Euler equation is

αw∗xxxx − βxw∗xx − βw∗x + (c20 − 1)w∗xx = 0 ,

which is (11). In other words, the solution w∗ of the minimization problem (17)–(18) is a
weak solution of the original problem (11)–(12).
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Estimations for the critical velocity

In this section, we derive analytical lower and upper bounds for the critical velocity. We
estimate the critical velocity c∗0 corresponding to (11)–(12) given by the relation

(c∗0)
2 = I(w∗) = 1 + α

I1(w
∗)

I2(w∗)
+ β

I3(w
∗)

I2(w∗)
. (22)

For the lower bound of (22), we obtain

(c∗0)
2 ≥ 1 + α min

w∈K

I1(w)

I2(w)
. (23)

For the upper bound of (22), we have

(c∗0)
2 ≤ 1 + α

I1(w
a)

I2(wa)
+ β

I3(w
a)

I2(wa)
, (24)

where wa is any function in K.
Combining (23) and (24), we can estimate c∗0 as follows:

1 + α min
w∈K

I1(w)

I2(w)
≤ (c∗0)

2 ≤ 1 + α
I1(w

a)

I2(wa)
+ β

I3(w
a)

I2(wa)
. (25)

To find the lower bound accurately, we solve the minimisation problem

min
w∈K

I1(w)

I2(w)
. (26)

Problem (26) can be transformed to the following boundary value problem (Euler equation
with boundary conditions):

wxxxx + λwxx = 0

w(0) = wxx = 0 , w(1) = wxx(1) = 0 . (27)

Solutions to eigenvalue problem (27) are known to be

wk(x) = A sin(kπx) , k = 1, 2, 3, . . . ,

λk = (kπ)2 .

The normalised solution (A = 1) corresponding to the minimum in (26) can be shown to
be

wmin(x) = w1(x) = sin(πx) ,

λmin = λ1 = π2 .

Inserting w1 into (19), we obtain

I1(w1) = π2

∫ 1

0

cos2 (πx) dx =
π2

2
, I2(w1) =

∫ 1

0

sin2 (πx) dx =
1

2

I3(w1) =

∫ 1

0

x sin2 (πx) dx =
1

4
. (28)

Choosing wa = w1 ∈ K in (24) and inserting (28) into (25), we obtain the estimate

1 + απ2 ≤ (c∗0)
2 ≤ 1 + απ2 +

β

2
. (29)

Estimate (29) gives lower and upper bounds for (c∗0)
2. Here, c0, α and β are defined in

(8), (9)–(10).
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Numerical solution by the Rayleigh–Ritz and the Fourier–Galerkin methods

The minimization problem was discretized using the Rayleigh-Ritz method and solved
using the interior point method. The differential equation was solved via the Fourier-
Galerkin method. Both methods were realized in Matlab.

Numerical solution for the minimization problem

Consider the minimization problem (17). Constant one does not effect the location of the
optimum and it can be omitted. Divide (17) by constant α. The obtained minimization
problem is equivalent to (17):

min
w∈K

[∫ 1

0
(wxx)

2 dx+ a
∫ 1

0
x (wx)

2 dx∫ 1

0
(wx)2 dx

]
, (30)

where

a =
β

α
=
gm`3

D
.

The problem (30) has infinite amount of solutions: If w is a solution, then also cw, c
is a constant, is a solution. Problem (30) can be solved as [6, p. 273]

min
w∈K

∫ 1

0

(wxx)
2 dx+ a

∫ 1

0

x (wx)
2 dx

subject to

∫ 1

0

(wx)
2 dx = 1 . (31)

In addition, w must satisfy boundary conditions w(0) = w(1) = 0. Now, the condition∫ 1

0
(wx)

2dx = 1 sets the absolute value of the constant c mentioned above. Note that the
normalization constant, which is now chosen to be one, can be chosen freely.

We discretize (31) using the Rayleigh-Ritz method. We present function w as a series

w(x) =
∞∑
j=1

vjϕj(x) (32)

in the basis
ϕj(x) ≡ sin(jπx) , x ∈ [0, 1]. (33)

The basis (33) fulfills the boundary conditions w(0) = w(1) = 0 naturally. We fix a finite
positive integer n0 (number of modes), and approximate (32) with its finite analog

w(x) =

n0∑
j=1

vjϕj(x) . (34)

Inserting (33)–(34) into (31), we obtain

min vTAv + a vTBv

subject to vTCv − 1 = 0 , (35)

where v = (v1, . . . , vn0)
T ∈ Rn0 .
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The elements of the matrices in (35) can be found analytically. They are

Aij :=

∫ 1

0

(ϕj)xx (ϕi)xx dx =
j4π4

2
δij ,

Bij :=

∫ 1

0

x (ϕj)x (ϕi)x dx = −
∫ 1

0

x (ϕj)xx ϕi dx−
∫ 1

0

(ϕj)x ϕi dx = −Eij −Dij ,

Cij :=

∫ 1

0

(ϕj)x (ϕi)x dx =
j2π2

2
δij ,

Dij :=

∫ 1

0

(ϕj)x ϕi dx =

{
0 , i = j

ij[(−1)i+j−1]
j2−i2 , i 6= j

,

Eij :=

∫ 1

0

x (ϕj)xx ϕi dx =

{
− j2π2

4
, i = j

−2ij3[(−1)i+j−1]
[i−j]2[i+j]2 , i 6= j

, (36)

where δij is the Kronecker delta.
The discretized problem (35) is a nonlinear optimization problem with a nonlinear

objective function and a nonlinear constraint. The optimization problem variable is vector
v. Note that the size of the problem depends on n0. Note also that the boundary
conditions are included in matrices A, B ja C.

Numerical solution of the differential equation

The numerical solution of the original boundary value problem (5)–(6) was performed by
using the Fourier–Galerkin method.

Define
λ := 1− c20 . (37)

Consider the dimensionless problem (11)–(12). Eigenvalue problem for the eigenvalue-
eigenfunction pair (λ,w) is

αwxxxx − β (xwxx + wx) = λwxx , (38)

w(0) = wxx(0) = 0 , w(1) = wxx(1) = 0 . (39)

By solving c0 from (37), we see that the largest eigenvalue λmax corresponds to the minimal
critical velocity.

It is easy to show that all eigenvalues λ ≤ 0. Inserting λ in (37) into (16), we obtain

−α
∫ 1

0

wxxvxx dx− β
∫ 1

0

xwxvx dx = λ

∫ 1

0

wxvx dx . (40)

Denote a(w, v) = −α
∫ 1

0
wxxvxx dx− β

∫ 1

0
xwv dx. Choosing v = w, we have a(w,w) ≤ 0,

but on the other hand a(w,w) = λ
∫ 1

0
w2
x dx. Thus λ ≤ 0, and a physically meaningful

solution (c20 > 0, by (37)) always exists. Furthermore, we see that c20 ≥ 1, i.e., the critical
velocity cannot be smaller than that of a travelling string (for which it is

√
T0/m).

We apply the Fourier–Galerkin method to problem (38)–(39). Once we have the
eigenvalue λ, we can obtain V ∗0 from (37) and (8).

We present function w as a Galerkin series (32) in the basis (33). The basis (33)
fulfills the boundary conditions (39) naturally. Inserting (33)–(34) into (40), we obtain
the matrix equation

(−αA− βB)v = λCv. (41)
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Table 1. Physical parameters for the reference case.

g T0 m ` h E ν

9.81 m/s2 500 N/m 0.08 kg/m2 1 m 10−4 m 109 N/m2 0.3

⇒ D = Eh3/(12 · (1− ν2))
9.1575 · 10−5 Nm

The elements of matrices in (41) are given in (36).
Equation (41) now becomes a standard generalized linear eigenvalue problem for the

pair (λ,v), to which any standard solver may be applied.

Numerical results

The physical parameters used are given in Table 1. The number of basis functions used
was n0 = 200. By equations (9) and (10), the given values lead to the nondimensional
parameter values α = 1.8315 · 10−7, β = 1.5696 · 10−3 and a0 = β/α = 8.5700 · 103, which
was used as a reference case. Problem (35) was solved using the Matlab Optimization
Toolbox. Optimization method was chosen to be the interior point method. The results
given by optimizer were validated by comparing to solutions given by the direct solver
(Fourier–Galerkin method).

Figure 3 presents the buckling modes and the corresponding critical velocities for the
different values of a in the case of the Rayleigh–Ritz and the Fourier–Galerkin methods.
In each figure, a solid line corresponds to the solution given by the optimizer, and a
dash-dot line corresponds to the critical mode given by the differential equation solver.
The buckling modes and the critical velocities (in figure titles) were the same in the
results given by the optimizer and the direct solver. (The solution plots for the calculated
buckling modes overlap.)

Some qualitative observations were made. First, the effect of gravity on the eigenmode
is very large, see Figures 3 and 4. The extremum of the eigenmode concentrates toward
the start of the span in both studied models. This result is as expected, because positive
x axis was chosen to point up in the gravitational field.

The effect of the gravity on the critical velocity is very minor, typically less than 0.01%.
See Figure 5. In this respect, the results resemble those from our earlier study, where the
effect of a linear tension profile to the buckling behaviour of an axially moving plate was
investigated [4].

Furthermore, the strength of the concentration effect depends on the ratio of the
dimensionless parameters β and α, i.e. on the quantity a = β/α = mg`3/D. The larger
this parameter is, the stronger is the effect. In the limit a → 0, the effect vanishes. In
the other limit a → ∞, the eigenmode approaches a characteristic shape that resembles
a sawtooth function (but starts smoothly from 0). See Figure 4.

In the case of nonvertical direction of motion with respect to the gravity, the buckling
problem was solved for different values of the angle θ in equation (4). In Figure 6 on the
left, the graphs of the buckled shapes are shown for the values θ = 0, π/8, , π/4, 3π/8, π/2,
and the displacement maxima are marked by ?.

In Figure 6 on the right, the buckling modes are represented for the values [0, π/2] of θ
as a colour sheet. It is seen that the buckling mode rapidly becomes nonsymmetric, when
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Figure 3. Critical buckling mode for some values of the parameters. The band moves toward the right
and gravity points toward the left. Comparison of the solutions given by the energy minimization (”opt”,
solid line) and by the direct solving of a differential equation (”direct”, dash-dot line). The dashed line
corresponds to a reference solution with no gravity (g = 0).
The top right picture represents the reference case given in the text, for which a = 8.57 · 103.
In the pictures, a/a0 = 10, 1, 0.1, 0.01, 0.001, 10−8 (from left to right, top to bottom, in that order).
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Figure 4. Critical buckling mode for different parameter values. The band moves toward the right and
gravity points toward the left.
The reference value is a0 = 8.57 · 103. Note the logarithmic scale of a/a0.
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Figure 5. Effect of the dimensionless parameters α and β (defined by (9) and (10)) on the critical velocity.
Note that the reference case is at the lower edge of the figure at β ≈ 0.0016. The scaling for the axes was
chosen to show the structure of the data.
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Figure 6. Buckling modes, when the direction of motion of the band is at an angle to the gravity. Left:
Graphs of buckling modes for some selected cases. Displacement maxima are marked by ?. Right: Colour
sheet of the buckling mode for values of θ between 0 and π/2.
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Figure 7. The location of the maximum displacement for θ in [0, π/2]. The stars (?) correspond to those
shown in Figure 6.

the moving direction of the panel non-orthogonal to the gravity, and the nonsymmetric
modes are quite similar for small values of θ. This behaviour is illustrated more clearly
in Figure 7.

Note that the sign of the axial velocity V0 does not affect the buckling problem (5)–(6).
Therefore, the range θ ∈ [0, π/2] covers all possible band orientations with respect to the
gravity.

Conclusion

The loss of elastic stability of an axially moving band (panel) was investigated, taking the
gravitational force into account. The studies performed were mainly based on analytical
approaches. The onset of instability in a divergence (static) form for some critical value of
the transport velocity was estimated using a variational principle to develop variational
inequalities. Analytical lower and upper bounds for the critical velocity were derived.
Additionally, it was shown that a critical velocity always exists.

Nonsymmetric solutions of the buckling problem (divergence forms and corresponding
critical eigenvalues) were illustrated with the help of numerical examples. As a result, a
large influence of the gravity force on the buckling mode, and a small effect on the critical
transport velocity, were established and discussed.

Optimization methods were shown to give reliable results for solving this type of
differential equations. However, the used interior point method was seen to be slow
compared to the direct solver.

The effect of the angle of the motion of the band with respect to the gravity was
numerically illustrated. This was done by solving the buckling problem, and the obtained
buckling modes were illustrated. Compared to the case where the gravity is orthogonal
to the axial motion, and does not affect the buckling mode, it was seen that even a small
angle is enough to produce a notably nonsymmetric shape.

Comparing to the effect of introducing a linear tension profile in the noncylidrical
deformation case (see [4]), it seems that very high sensitivity of the buckling mode, and
very low sensitivity of the critical velocity, to various aspects of the problem setup is a
phenomenon typical to this class of problems.
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